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1.1, VOROVICH and I, G, KADOMTSEV
(Rostov-on=-Don)
(Rece{ved March 11, 1970)

The problem of the passage to the limit from three-dimensional problems of elasticity
theory to two-dimensional problems has been investigated in [1, 2] for multilayered
plates, A first {terarion process has been constructed therein on the basis of methods
developed in {3, 4L

A construction of homogeneous solutions of elasticity theory problems for sandwich
plates of symmetric configuration is given below, As in the case of a homogeneous
plate [6], it is shown that the complete solution consists of a biharmonic, potential and
vortex solution, The potential and vartex solutions are in the nature of an edge effect,
Comparing them 1o the case of a homogeneous plate, shows that the edge effects can be
both weaker and stronger, depending on the physical and geometric parameters of the
sandwich plate,

The accuracy of some applied theories [6] is analyzed on the basis of the solution
constructed, and limits for their applicability are established,

1, Let us consider a sandwich plate comprised of isotropic layers which are symmetric
fz relative to the middle plane of the middle layer

5 (Fig.1). Let p;denote the shear modulus, i the num-
, ber of the layer, 0; the Poisson's ratio, Let the outer
2k 2 "'7 layers of thickness & have the elastic characteristics
A ~ ' viand p,, and the inner layer of thickness 2h the
¥ A elastic characteristics v, and {i,.

Fig. 1 Let us assume the outer plane faces to be stress-
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free, i, e, let us examine the homogeneous solutions, Let us utilize the method proposed
in [5, 7] to construct the solution, By satisfying the conditions of contiguity of the dis-
placements and stresses where the layers are connected, and the homogeneity conditions
on the outer faces, we obtain three kinds of stress-strain states of a sandwich plate: a
biharmonic, potential and vortical,

The biharmonic solution is

u" = Aa [(vo + 1) 109/ OE — Yy (vo -+ Y/s) L3A20AY ] O] (1.1)
vi" = Mg [(vy + 1) L0%/ 00 — Yy (vy + Ys) LPA20AY ] 81]
w) = — (v, + 1) @ + ah? [2v,£,(0) — Ya (v, — 1) 2] AW

=0 (vi =1/ (1 — 25;))

18, = 2uVoA,0AY] 38, 1l 5 = 21,v,A2f10A ) O

o) = 2p,x{[2v2%?} + (v — 1) -‘;—:’%—]i— (V3 + ';1:,') i_;_p __a;‘;p}
of) = 2uh {[2v,%',‘l’.-;- + (va—1) %2'%] t—(v+ %) T _maﬁ? }
W= 20h [0+ )2 530 — (v + ) 53 50 | 4.2

) = uf? + ahf,0A%/ 08, i = vy) + ah3f,0A] 0y
o = uf® + a0, (1 — ?) AY, o =0
r&‘;’,x = 2iuvi6; (1 — L) A*9Ap ] 0%
o = 24918y (1 — %) M20AY ] On
oeh = PTolh + 2y (— 20,LAY + A%,0°A% ] OE%)
o'} = p16{l} + 21 (— 2053AAY + A3,0%A% ] In?)
o1 = P15, 5 + 2i8,A%f,02Ap/aE0N

oz ¥ .z _ k48 __k

=7 "= b= A= h=g3y
_ b 14w _ V:—W1

}"Z—h+6v p'—i;_s 61—1-'-\’1, 92"" 1TF+w

fi=M2+ P vy 16, (1 — M%) — 2
fa= 03 (Ysl® —Th* + 2sM®) — 2v10, (1 — P (1 = MA (E — M)

Here .q is the characteristic linear dimension of the sandwich plate in the zy plane,
A the Laplace operator, 1 some biharmonic function of the variables g, n.

It is seen from (1.2) that for small A and large p the displacements {0, {1 are
determined by the displacements us”, v{" to the accuracy of terms of order A3. If
p ~ A%, then the corrections become on the order of the first term, But the quantity
wy®) is determined by w,® to the accuracy of terms on the order of A2and the correc-
tions are independent of p.

The potential solution is of the form(here and henceforth, the summation over % is
between 1 and oo)



832 1. L Vorovich and I, G, Kadomusev

ac
u® = xa?.a,,‘-?,-*-, ¥ = ?xaza,k—ﬁ"— , Y = aZhuC, (1.3)
60 b/
7::2 i = 2}*52?'17: aE Tglaé).i = 2""!2"{1: ";’%"
a2 Cy
o) = 21, [--—— ZCr + Mg gt |

Gge.i = zi‘i {

Esikck 4+ AZag ’E—]
a’

Qg = Eu: sin Tyl + Egel c0s i (1.4)
bax = EyxTx 08 Ta§ — Eox [Tal 8in 1l + (2 + va) vat cos 1L ]
Fae = Byt 008 1l — B [Tal sin Tl -+ va 2 cos 744 ]

tay = — Tt {EwesinTil + Eax [Loos Tyl — (1 4+ vo ) Ty tsinyl]}
sqr = Eqgva M1k sin )

@y = Dygsin (§ — Ay) Yk 4 Dy c03 (L — M) i +
+ Dgg (& — Ay) sin(§ — M) Y + Dax (§— Aq) 08 (§ — Ay) T

byx = DyxYr 08 (§ — Ay) Tx — Dag¥esin(§ — A e +
+ Do [Tk (§ — M) cos (L — Ay) 7 — (1 4- 2vy Y sin(§ —Ay) 1il —
— Do [1x (& — M) sin(§ — M) T + (1 + 2vy M cos (§ — Ay) 7]

rix = D1x €08 (5 — M) Tx — Dagsin (§ — M) 1 -+
+ Dgg [Tk (§ — Ay) co8 T (5 — Ay) — vy sin (§ — M) 1x) —
— Dy [T (& — M) sin{§ — A1) Tx + V1 08 (§ — Ay) Tl

by = — T* {D1x8in ({ — Aq) Tx + Dagcos (§— A1) 1 +
+ D [T — M) sin(§ — M) Tk + (1 +vo) (mTe) Feos (§— M) 1eed +
+ D [(G = Ay) 003 (L — Ay) Vi == (L 4 vp) (vivi) ™ sin (G — M) 1}
S1x == TV [Dgesin (§ — Ay) 7 — Dsx 03 (L — M) ¢l

1 1 €08 A1Y
Eyy = th {P tlm oS AgY (}‘-1 sin MYy + """“""‘"3') +

Vi 1Yy
+ Ap 50 gk €08 M7 (1 + pVvi7Y) -+ MAgTi €05 (Ay — Ag) Tie (1 — p) —

i1 + V2
— T v P sinAgTy sinAgYy —

- %”;— (510 A4 08 AT (p — 2 — va) — PP (1 + va) sinMatycos il | (1.5)

By = 1120 [P : + L ¢os AyTk COS AT —

vi

<1 + ) sin MYy sin 7“2’1’;: — At (1 — p)sin(hy — Ay) ’I’x}
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(cont, )
sSindrYy, r , 24w
Dy = —sindamy{ 23 (1 — 2p — pva) (0 + ) -+ —g—2 [P +
. { N 2 1+ cos)wn'k
PEES Y S I a J} + (x, sin AgTy -+

2 1
p— V“+ c08% AT + Mg €08 ATy Lmk(l - p)( +"1 - —\;;) +

2 + vy 2 + v . 3 + Vi ]
—;— '12' sin leTk ( vy - ViV T Vivy )
sin 2A17 1
Dy = 1 -§v-1v1 {P 1-{; ! coS ATk (7&1 - o ’f) +n + 2 sin? MY X

sin M‘Yk

sin 2)~1Tk
ot (p = 2—v)1)

X (M c0S AgYy — ) + Ag sin Mgty [7\'171: (1—p)—

Dy =p LECEN i py, sint dyre —
—pitx + =05 ATk [MY (1 — P) + Yasin 2h7e (P + ¥ 1)] —
— ATy sin Xa’l’k (1 —p) MTx (1 = p) +Yysin2hYy (P -+ 1 4 2v,7Y))
Dy = p LEBLEN oo5r 1, cos by — sin bty [Mrx (L — ) (4 +P0i7) +
PMTE (@vg 4 viva £ Py — Ps + P)| — Ty coshat (1) [hame (1—P)+
+ Yasin2h7x (1 4+ p + 2v47)]

The function C, ({, ) are determined from the equations

aC »*C Tyl
E: + 67; '; Cy=0 (1.6)

The letters ¥ » denote nonzero roots of the function

F (y) = (p — 1) (y*A* — sinyAy) [29A; + (1 4+ 2vg7Y) sin 290,] —  (1.7)
— p (p — 1) @yM — sin 29Ay) [p*A® — v;™2 — (1 + 2v;7%) cos *yA,] +
+p (4 v vy — vy) (vvy)"H2pA — sin 2yM,) -+
“+ (1 + vy)( 2y— sin2y)] = 0

The vortex solution has the form

0B 2 -
® = 2%y, -7,1'1 v = — 2A%3l, ; - u® =0 (1.8)
. OR . 8B
TS::? i = 2u{AZl s -a—,f- * 'F(ysz),i = 2Tl —5—"- N Gz,i =0

8B &B. \ B,
8,1 = 2uAEy (755‘ - —ag—f) , oby= — o) = 4uATly, -5;;-57{

Ix,e = BTy  sin Byl (1.9)
Iy, = Bx pcosA By sin (S Ay) By -+ Byt sin AyBy cos (L — Aq) By
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The functions By (§, ) are determined from the equation
6’Bk 6‘Bk B"

The quantity B is the root of the equation
(1 + p)cosP = (1 — p) cos 24 — 1) B (t.11)

2, Let us show that (1,11) has only real roots, Let us use the notation
k=(1—p){1+p)? Ay =20 — 1

Since p & (0, =), A, & (0, 1), then k &= (—1, 1), Ay & (—1,1). Let us assume
that (1,11) has the complex root § = z - iy. Separating real and imaginary parts,

we have cos ¢ ch y = k cos Agz ch Ay, sin z shy = k sin Ayz sh Ay
Hence o
1=k [cos‘-' AoZ (_"é‘i-’“-;”—)“ + sin? Agz (%"3-‘;’-')’] @0
Since

(ch Ay /chy)? < 1, (sh Agy /shy)* << 1
then we can write
{ << k? (cos?® Ayz -+ sin® Ayz) = K®
But| & [ << 1, which results in a contradiction, It is thereby shown that Eq.(1,11) has
no complex roots, Let us assume that Eq, (1.11) has the imaginary root § = ig, then

it becomes ch a = kch A (2.2)

but because | £ | << 1 and | Ay | << 1, Eq, (2.2) has no real roots, and therefore, Eq,
(1.11) has no imaginary roots,

Let us examine how f},, the first positive root of (1,11), behaves, Since (1, 8) is a
boundary-layer type solution, the nature of the penetration of the solution within the
region is determined by B,. In the case of a homogeneous plate (1,11) is of the form

cosf = 0 (2.3)

It is easy to see that Py < Y% for p << 1, i.e. for a weaker middle layer, and f,
tends to zero as p — () , Therefore, in a three-layer sandwich plate with a weak middle
layer the vortex solution penetrates more strongly within the domain than in a homoge-
neous plate, and the nature of the penetration will be stronger, the weaker the inner layer,
If p>1, then B; > Y,nt and the quantity B, tends to 7 as p — oo, Therefare, in
the case of a rigid filler the vortex solution of a sandwich plate penetrates more weakly
within the region than in a homogeneous plate, and the nature of the penetration is
wealeer, the more rigid the filler,

Let us examine (1.7), It can be shown that this equation has no imaginary roots, where~
upon it follows that the potential solution is 2 boundary~-layer type solution, Let us ex~
pand F (V) in a series in v (2.4)

FEy=v%HU+wNp b+ v YA+ 4+ v — M)+

It is seen from (2. 4) that the coefficient of ¥* does not vanish for any changes in the
parameters, therefore, there are no additional zero roots in (1. 7).

Following [8], let us find the asymptotic roots of Eq. (1.7) in the first quadrant

yp = ctgo [n 2k — Y,) + arg Z] 4 iln|Z " 2nk ctg o| (2.5)
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In the first quadrant Eq, (1. 7) has three branches of asymptotic roots corresponding to
the three values of Z and ctg @. The asymptotics of the roots hence depends on A,

a) M < s, ctg @y = Vi, (2.6)

pU+ W)+ wh =Y (p— 1142w — (4 + 207} p]
MAI—=p 1+ p+2u™)]
1 t rid4pd+2n) A
e e U vl o 7= ]

1
b) A o=y, ctg Q103 =% (2.7)

Zt=

The values of Z,, Z,, Z4 are determined from the equation
1622 (1 —pP + 122 p—1N)(p+ 1+ 229NV F+1BZ(p-—-NH U +p(1 +

+22MN+2p A+ )+ ) =T — 1) I+ 297 —
—p A+ 2vyH) =0

c) M > s, ctg ¢y = (1 — M) (2.8)
Zeom A [ pUFWD A Fv = Yelp— ) [1+ 2071 — pd + 2vTY) ]‘7-
LT T 1—?»1{ A—p 1+ pl+2n7Y]

+ 0+ 2w

M —p
8, The hypothesis of shear stresses, whereby T, , and T, , are considered constant
over the thickness of the middle layer, is often used in applied theories, Let us investi-

gate the limits of applicability of this hypothesis, We find from (1, 1)

- 1
otg s = YoMyt Zy=

T2 max = 20gVah2 [A2 4 vy (V)1 6; (1 — M%) BAY ] 08 (3.1)
'ng),z min = 2RgVi A3y (pv,) 26, (1 — M) AP/ B (3.2)
Let us consider the ratio w "
Txz, gmax __ s i i
Sy g 33

For the hypothesis of shear stresses to be satisfied it is necessary that
L R 3.4
tiv: 1—-7\'13<8 (3-4)
where & is a previously assigned number characterizing the accuracy of the hypothesis,
The inequality (3, 4) depends on the dimensionless thickness A, of the middle layer as
well as on the ratio between the elastic moduli p. The inequality (3, 4) depends slightly

on Poisson's ratios since for any o, 1y < v, (v,0,)°) 3.5)
2 S Ve 8 <2 3.

It is seen from (3, 4) that the smaller the },, the wider do the boundaries of applicabi«
lity of this hypothesis extend, For any real materials a %, can be found for which the
hypothesis becomes valid, and conversely, a ), can always be found for which the hypo-
thesis will not be valid,

As an illustration, let us consider several examples, Let us prescribe & and z,l.and et
us find p from (3, 4). For simplicity, let us consider materials with equal Poisson's ratios,
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Let us assume the accuracy to be 3% for the hypothesis of shear stresses, therefore ¢ =
=0.03, Let us present values of p calculated from (3, 4) for some values of A,

M=005 04 0.3 0.5 0.7 0.9 0.95
p <12 3 3-10-t 9.10"* 3.10* 7.40~® 3.3.10®
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ON THE STABILITY OF COMPRESSED BARS

PMM Vol, 34, M5, 1970, pp. 877-884
G,S. MARKMAN and V, 1, IUDOVICH
(Rmtcv-cn-Donl
(Received April 27, 1970)
The problem of the stability of an incompressible elastic bar of variable stiffness, com-
pressed along the axis, is considered, The validity of linearization is proved, and the
equilibrium modes after buckling are investigated,

After reduction of the appropriate boundary value problem to an equation with a com-
pletely continuous operator, a theorem of Krasnosel'skii [1] on bifurcation can be applied.
In utilizing this theorem the proof of thé simplicity (or odd multiplicity) of the eigen-
value of the corresponding linearized problem is the principal difficulty,

The case of hinged supports of the bar ends was considered in [2]. In this case the
linearized equation is of second order, and the simplicity of the eigenvalues results from



