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The problem of the passage to the limit from three-dimensional problems of elasticity 
theory to two-dimensional problems has been investigated in fi, 21 for multilayered 
plates. A first iterarion process has been constructed therein on the basis of methods 
developed in [3, 4% 

A construction of homogeneous solutions of elasticity theory problems for sandwich 
plates of symmetric configuration is given below. As in the case of a homogeneous 
plate Es], it is shown that the complete solution consists of a biharmonic. potential and 
vortex solution. The potential and vortex solutions are in the nature of an edge effect, 
Comparing them to the case of a homogeneous plate, shows that the edge effects can be 
both weaker and sttonger, depending on the physical and geometric parameters of the 
sandwich plate. 

The accuracy of some applied theories [S] ls analyzed on the basis of the solution 
constructed, and limits for their applicability are esrabIished. 

1. Let us consider asandwiehplate comprised of isotropic layers which are symmetric 
relative to the middle plane of the middle layer 
(Fig. 1). Let pr denote the shear modulus, i- the num- 
ber of the layer, ui the Poisson’s ratio. Let the outer 
layers of thickness B have the elastic characteristics 
vrand CL*, and the inner layer of thickness % the 
elastic characteristics vs and p2. 

Fig. 1 Let us assume the outer plane faces to be stress- 
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free, i. e. let us examine the homogeneous solutions. Let us utilize. the method proposed 
in [S, 71 to construct the solution. By satisfying the conditions of contiguity of the dis- 
placements and stresses where the layers are connected, and the homogeneity conditions 
on the outer faces, we obtain three kinds of stress-strain states of a sandwich plate: a 
biharmonic. potential and vertical 

The biharmonic solution is 

&) = h.2 w2 + 1) bw i a5 - II2 (v2 -t Ifs) :waAq f ati 
(1) 

u2 =W(v,+%awa~- lJ2 (~2 + l/3) C3h”aA11, J arll 
(0 

w2 = - (~2 + 1) a$ + aA2 [2v2f1(0) - V2 (v2 - 1) Sal A$ 
Qz.2 = 
(1) * 

(Vi = 1/ (1 - 2q)) 

(1.1) 

h -__L 
2-hh+e’ P==$ 8 i+vs (j vs - Vl -- 

1- i+v1* 2’1 
fl = h,3 + p-41vp-w1(1 - &“) - 5” 

f2 = 62 (‘/&’ - Sk,’ + 2J3?q3) - 2@1(1 - P-l) (I - ha’) (5 - h) 

Here a is the characteristic linear dimension of the sandwich plate in the q plane, 
A the Laplace operator, 9 some biharmonic function of the variables 5, q. 

It is seen from (1.2) that for small h and large p the displacements ~1~). vi’) are 
determined by the displacements z$‘, VP) to the accuracy of terms of order As. If 

P ~1 h2, then the corrections become on the order of the first term. But the quanti~ 

y,(t) is determined by w,(r) to the accuracy of terms on the order of h2and the correc- 
tions are independent of p. 

The potential solution is of the form(here and henceforth, the summation over k is 

between 1 and 00) 
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x 

(cont. ) 

DZk = - sin hark 
( 
+(1-2p-pva)(p+v,)-t yyyk [p’q + 

D2k = 

( 

?q cos h2rk - h+fk(l -P> 

? 
1 + v2 

-sin* h,Yk x 
v2 

sin ?&ly k 
2x92 

(P -- 2-%)I) 

The letters y L denote nonzero roots of the function 

F b9 = (P - 9 tP%* - s~~*y~ 12& + (1 + 2v,-9 sin 2yAJ - (1.7) 
- p @ - 1) (2y?k, - sin 2y?b& [yakSa - vImQ - (1 4 2vl’l) co9 941 + 

+ p (1 + P) I&, - ye) (~1~t)-1(2~~l - sin 214) + 
-C_ (1 + vIT1)( 2y- sin2y)l = 0 

The vortex solution has the form 
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The functions Ba (t, q) are determined from the equation 

The quantity p k is the root of the equation 

(1 + p> co8 6 = (1 - p) cos (W, - 1) j3 

(1.10) 

(1.11) 

2, Let us show that (1.11) has only real roota. Let us use the notation 

k = (1 - p) (1 + ZV, &s = 2, - 1 

Sin= p E (0, oo), h, E (0, I), then k E (-1, 1), h, E (-1,l). Let us assume 
that (1.11) has the complex root fi = 3: + iy. Separating real and imaginary parts, 
we have 

cos r ch y = k cos &x ch hsy, sin 5 !3h y = k sin &x sh &g 

Since 
(chQ/ch#< 1, (sh kg/ / sh y)$ < 1 

then we can write 
1 ( ks (cos? ksz + sin* hsx) = k2 

But 1 k 1 < 1, which results in a contradiction, it is thereby shown that Ep. (1. II) has 
no Complex roots. Let us assume that Eq, (1.11) has the imaginary root g t iat then 
it becomes ch a = k ch h,a cy 
but because 1 k 1 < 1 and 1 h, 1 < 1, Eq. (2.2) has no real roars, and therefore, Eq. 
(1.11) has no imaginary roots. 

Ik?t us examine how pt. the first positive root of (I, 11). behaves. Since (1.8) is a 
boundary-layer type solution, the nature of the penetration of the solution with& the 
region is determined by @i, In the case of a homogeneo~ plate (1.11) is of the form 

co9 p = 0 (2.3) 

It is easy to see that f& ( l/g for p ( 1, i.e. for a weaker middle layer, and fir 
tetitozeroasp+O. Therefore, in a three&ye; sandwich plate with a weak middle 
layer the vortex solution penetrates more strongly within the domain than in a homoge- 
neous plate, and the nature of the penetration will be stronger, the weaker the inner layer. 
If p > 1, then j3t > ‘last and the quantity & tends to sr as p -c 00. Therefore, in 
the case of a rigid filler the vortex solu~on of a sandwich plate penetrates more weakly 
within the region than in a homogeneous plate, and the nature of the ptmeaadan is 
weaker, the more rigid the filler. 

Let us examine (1.7). It can be shown that this equation has no imaginary roots, where- 
upon it follows that the potential solution is a boundary-layer type solution. Let us ex- 
pand F (y) in a Series in y (2.4) 

F W = Y” ‘1s fj + vl-9 p [p (1 + ~~-1) h,J + (1 + Y;“) (1 - h13)J 5... 
It is seen from (2.4) that the coefficient of ,p does not vanish for any chbgm in the 

parameters, therefore, there are no additional zero roots in (I. 7). 
Following [8]. let us find the asymptotic roots of Eq. (1.7) in the first quadrant 

yr=ctgg, [n(2k- V2) + arg 21 + i In 1 Z-‘2rck ctg qr } (2.Q 
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In the first quadrant Eq, (1.7) has three branches of asymptotic roots corresponding to 
the three values of 2 and ctg cp. The asymptotics of the roots hence depends on h, 

a) h, < r/s, ctgcpr = ‘I&,-’ (2.6) 

2 p (1 t_ vr-1) (i + vs-1) - ‘lo (p - I) p + 2vi-l - (I+ 2v13 PI 
I= Al ff - PI ti + p e+ 2%~~If 

acPo,s= 1 :A1 9 
2 a,3 = t- 1: Al [ 

i + p (i + 2v1-1”) ‘I* 
2 (1 - PI I 

b) Al = 113, a fP1 2.8 = s/2 (2.7) 

The values of Zr, ze, 2s are determined from the equation 

16iP (1 - py + 122” (p - 1) (p + 1 + 2v,-‘1 + 182 (p - 1) 11 + p (1 -I- 

-+ 2Vl’l)l + 27p (1 + VI’1) (1 + Yz”f) - 2’1~ (p - 1) 11 + 2Y2-I - 
- p (1 + 2Y,“l)l = 0 

cl A, > 1J8, cu! (Pl*Z = (1 - w (2.8) 

8, The hypothesis of shear stresses, whereby z,.., s and zyz. 2 are considered constant 
over the thickness of the middle layer, is often used‘in applied theories, Let us investi- 

gate the limiu of applicability of this hypothesis. We find from (1.1) 

&Y a . max = 2p2v2h2 h2 + ~1 W2Y-’ f&(1 - b2)l ?A\tr f a% (3.1) 

if) 
Frz,2 min = 2~2~~~~~(p~~~-~8~ (I- A,‘) (3Aq I a& (3.2) 

Let us consider the ratio 
+‘I XI, 2max 

4: rmin 

(3.3) 

For the hypothesis of shear stresses to be satisfied it is necessary that 

where e is a previously assigned number characterizing the accuracy of the hypothesis. 
The inequality (3.4) depends on the dimensionless thickness h,of the middle layer as 
welI as on the ratio between the elastic moduli p. The inequality (3.4) depends slightly 
on Poisson’s ratios since for any bi 

‘/2 < y2 c@p < 2 (3.5) 

It is seen from (3.4) that the smaller the $, the wider do the boundaries of applicabi- 
Uty of this hypothesis extend. For any real materials a h, can be found for which the 
hypothesis becomes valid. and conversely, a A1 can always be found for which the hypo- 
thesis will not be valid. 

As an illustration, let us consider several examples. Let us prescribe E and &.and let 
us find p from (3.4). For simplicity, let us consider materials with equal Poisson’s ratios. 
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Let us assume the accuracy to be 3% for the hypothesis of shear stresses, therefore e = 
= 0.03, Let us present values of p calculated from (3.4) for some values of & 

h1= 0.05 0.i 0.3 0.5 0.7 P<Q 3 3.10-1 9.10-a 3.10-3 70:$-a 30:&o* 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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ON THE STABLLITS OF CmSSED BARS 
PMM Vol. 34, NOS. 1970, pp. 877-884 
G. S. MARKMAN and V, I, NDOVICH 

(Rec&!$?“~o~? 1 97 0) 

The problem of the stability of an fncompeessible elastic bar of variable stiffness, com- 
pressed along the axis, is considered. The validity of UneariaatIon is proved, and the 
equilibrium modes after buckling are investigated. 

After reduction of the appropriate boundary value problem to an equation with a com- 
pletely continuous operator, a theorem of Krasnosei’skif p] on bifurcation can be applied. 
In utlllning this theorem the proof of the simplicity (or odd multiplicity) of the efgen- 
value of the coattpoadfng linearieed problem is the principal difficulty. 

The case of hinged supports of the bar ends was considered in fz]. In this case the 
linearixed equation is of second order;and t&e simplicity of the efgenvalues results from 


